Animation Inbetweening Based on Machine Learning and Spline Curves

Haina Wang?, Houxian Su?, Zhizhi Wang?

“Zhejiang University, No.38 ZheDa Road, Hangzhou, 310027, Zhejiang, China

Abstract

In simple terms, animation inbetweening is a kind of video interpolation for low-frame-rate 2D animation. Although there are
many mature video interpolation algorithms, they are all designed for videos with higher frame rate than 24fps, so they are not quite
suitable for animation inbetweening works with large motion spans and frame rates usually lower than 12fps. In addition, these
interpolation algorithms do not do a good job of preserving the outlines of the objects in the video, which is also required in actual
animation inbetweening work. In this work, we propose a different interpolation method. Specifically, we use B-spline curves to
fit the outlines of 2 input frames, and find the curves that have moved between the frames and then match them. After that, we
predict the positions of the moving curves in the middle frame, and thus we obtain the middle frame composed of the unmoved
curves and the predicted curves. Our algorithm can preserve the outlines of the middle frame during interpolation, and any number

of mid-frames is supported.

Keywords: inbetweening, interpolation, spline, animation

1. Introduction

Animation inbetweening is a common process in 2D anima-
tion production. This process usually need to add some inter-
mediate frames to the keyframes (frame rate is usually less than
12fps) drawn in the previous process, so that the frame rate
reaches 12fps to 24fps, making the actions in the animation
look smoother. In the CV field, video interpolation is a research
field close to this work, but the difficulty of animation interpo-
lation is that the objects’ movement between adjacent frames
changes greatly, the video frame rate is also very low, and the
interpolation requires that the outline shape of the intermediate
frame be drawn clearer.

In recent years, with the great development of neural net-
works and deep learning, video interpolation algorithm research
has made a lot of progress. Generally speaking, there are two
main methods for existing video interpolation algorithms, one
is kernel-based and the other is flow-based. Generally speak-
ing, kernel-based interpolation is to process the input front and
back frames with convolutional neural networks and then merge
them "1 2]; while flow-based methods are based on optical flow,
the main idea is to estimate the optical flows from adjacents
frames to the intermediate frame, and then use the estimated
optical flow to warp the adjacent frames to obtain the required
intermediate frame. A classic algorithm for this method is super
slomo!?.

As the research on video interpolation progresses, some new
design algorithm processes also become more complex. For ex-
ample, Bao et al. proposed DAIN#!, which used a network that
analyzed depth information> when estimating optical flow,
and used image semantic analysis to obtain features!! for as-
sistance in generating intermediate frames using optical flow
information; Siyao et al. proposed Animelnterp!”!, which used

Preprint submitted to no journal presently

Segment Guided Matching based optical flow estimation to im-
prove the quality of interpolation outline. There are kernel-
based methods that use transformer®!, and there are also algo-
rithms that try to combine flow-based and kernel-based meth-
ods !,

The above research progress has made video interpolation
quality higher and higher, however the work object is for the
videos with a frame rate of at least 24fps, and the outline
of the generated intermediate frame is often blurred. Even if
Animelnterp!” based on Segment Guided Matching mentioned
above improves the quality of interpolation outline, there is still
some blur. Some video interpolation works extract outlines !
separately for frames, but only use outline as a reference for
interpolation'!, and their outlines still have blur.

Based on the researches above, our work mainly focuses on
ensuring the clarity of intermediate frame outlines during in-
terpolation. We propose a model based on spline curves. In
our work, we first use B-spline curves to fit the contour lines
of the adjacent frames, find out the curves that have moved and
match them, and then predict the position of moving curves in
intermediate frames. In this way, we get an intermediate frame
composed of unmoved curves and predicted curves. Because
we generate an intermediate frame described by B-spline, we
ensure the clarity of our generated intermediate frame outline.

2. Related Work

2.1. ATD-12K Dataset

Due to the fact that many of the drawings of 2D animation
are commercial activities, obtaining data sets is also a big diffi-
culty for animation interpolation research. Fortunately, Siyao et
al. proposed a data set ATD-12K in their AnimelInterp work "

May 5, 2023



ATD-12K is a large-scale animation triplet dataset, which com-
prises 12,000 triplets with rich annotations.

2.2. Conversion of Sketches

ATD-12K is taken from finished animations, so it’s not fea-
sible to treat it as datasets directly. Nevertheless, Edgar Simo-
Serra et al.["?! has present a novel technique to simplify sketch
drawings based on learning a series of convolution operators.
Within the help of their work, ATD-12K can be transferred into
hand-drawn like images with contours well-preserved. Further-
more, our output can also be optimized with it.

2.3. Bspline Fittings

To fit the contours of the work into Bsplines, we’ve refer to
Wang et al.’s 131 work and Celnikera et al.’s !'# works. Specif-
ically, we rewrite the cpp code provided by Wang with python
after replacing some cpp library calls into our works.

3. Our Algorithm

3.1. Algorithm Overview

Lane 1-nputdesl Lans 2-praworks Lane 5:Clustering Lane &:Cluster Matching | Lane 5:Track Generation Lane &

figure 1: Our algorithm’s framework.

In our algorithm, we first use local threshold, stylization and
global threshold in opencv to binarize the adjacent frames of
the input into black and white. If it is for training, we will also
do the same for the intermediate frame as ground truth. Then
we use B-spline curves to fit the contour lines of the adjacent
frames of interpolation, and then we find out the curves that
have moved in adjacent frames. For the moved curves, we clus-
ter them, and after clustering we match the moved curves from
the front frame with the moved curves of the back frame. After
that, we use the quadratic motion equation about time ¢ which is
trained to estimate the motion trajectory of the control points of
the moved B-spline curves and the position of the control points
in the intermediate frame. Finally, we restore the B-spline curve
of the intermediate frame outlines from the predicted control
points, which is the moved curves in our generated intermedi-
ate frame. Superimpose them with the unmoved curves of the
adjacent frames to obtain an intermediate frame.

We leave many parameters within each step of the algorithm,
which are to be trained by simple regressions on our dataset,
therefore to get a machined-learning-assisted method.

3.2. Pre-processing and B-spline Fitting

We use local threshold, stylization and global threshold
in opencv to binarize the adjacent front and back frames
of the input into black and white. We use findcontours in
opencv to extract all the outlines of the adjacent frames, de-
noted as A_contours, C_contours. Divide the outlines into
those with length > 30 and those with length < 30,
and get A_contours_long, C_contours_long, A_contours_short,
C_contours_short. If this set of data is used for training, we
will also read in the intermediate frame and perform the same
operation.

Then we use B-spline curves to seperately fit the contour
lines in A_contours and C_contours. We limit the number of
control points of B-spline to some n, where n is modifiable.
This is designed to meet the fitting requirements for various
images. If this tuple of data is used for training, we will also
read in the intermediate frame and perform the same operation.

3.3. Movement Finding

For A_contours_long and C_contours_long, we need to find
out the set of curves that are really moving. We currently use 5
coeflicients kj to ks.

The fitting result is a set of closed third order B-spline curve
with n control points third-order B-spline sub-curves obtained
by fitting. For each sub-curve obtained by fitting, we take k3
points at equal intervals. If k; points are consecutively not on
the other frame, or a total of k, points are not on the other frame,
this sub-curve needs to move; if the entire curve has k4 consec-
utive points that need to move, or a total of ks segments need to
move, the entire curve needs to move.

By simple trainings, the coeflicients related to motion finding
are set as follows:

k1 =8, kp =17, ks =25, ks =9, ks = 10

3.4. Clustering

For the long curves A_contours_long_move and
C _contours_long_move that need to move, we use biclustering;
for the short curves A_contours_short and C_contours_short,
we use single clustering.

For biclustering, we firstly cluster the centroids of the curves
using the algorithm DBscan, and limit the number of classes
from n = 5 to n = 12 by tuning the parameters; then cluster all
the points on the curves using the algorithm Agg. if there are
not more than 2/3 of the points on the same sub-curve of curve
belong to the same class, it is regarded as the n + 1 class. Such
kind of curves are usually born of global contours.

And for single clustering, we directly use K-means.

3.5. Matching

For the matching between A and C, we use diffrent algorithm
for long curves and short curves.

To match the long curves, we first use structural method to
try to match similar curves piecewisely. More specifically, we
score the curve pairs in 3 dimensions:



1) shape. we choose a random point M first, and for n con-
trol points P;_,, calculate n cross product Mi’l X M?’z, M732 X
M—P3, ey M_Pn X M_P]. Then we get another n-dimensional vec-
tor. Similar contours will have similar cross products, which
can be judge by the first norm of the difference; Besides, the
result may have many dimensions exactly the same and a few
dimensions significantly differ(which is the most cases when a
large character has a small moving part), so a few worst dimen-
sions is required.

2) control point polygon’s shape. We calculate the length of
the sides of the control point polygon’s to generate the vector,
and use similar method to score it.

The weight and the detailing parameters are decided by re-
gressions on the training data. We apply this to the large con-
tours, stretch them out once a pair of curves among the two
frames matches perfectly(decide by some parameter). And for
those curves with no well matches, we leave them to the next
step.

In the next step, we use the algorithm network flow to con-
struct a surjection to the front frame (allowing a sub-curve of
the back frame curve to match multiple front frame sub-curves),
and the coefficient is the distance between the midpoints of
the four sides of the rectangle enclosing the outline. For the
matched curves, start from the control point corresponding to
the nearest midpoint and match according to the direction (for
example, if the lower boundary of the two curves is closest, then
the lowest and leftmost points of the two curves match, and then
match one by one counterclockwise).

To match the short curves, we directly treat them as separate
points and use the Gale-shapley algorithm.

Mind that, in both the matchings of long and short curves
with clusters, we use some functions to judge the quality of
matchings and the risk. The matchings with little chance to be
accurate (e.g. too far away or too prominent within its belong-
ing cluster) will be discarded. The Gale-shapley algorithm can
guarantee that there exist no pair of matchings which may get
better after switches, so discarded part will not be too large. In
practice, a poor matching may trigger notorious noise curves
globally, which is much worse than do nothing at all.

3.6. Movement Prediction

If the point pair (x;,y;) and (x,,y;) are matched, it means
there’s a motion trajectory about time ¢ pass the points (xi, y;, 0)
and (XQ,yz, 1)

We use the trained equations x(f) = at® + (xy — x; — a)t + x;
and y() = ar* + (y, — y1 — a)t + y; to predict the (x;,,,yy,,) in
(xtl/z’yfl/z’ t1/2)'

3.7. Intermediate Frame Generating

We restore the B-spline curve of the intermediate frame out-
lines from the predicted control points, which is the moved
curves in our generated intermediate frame. Superimpose them
with the unmoved curves of the adjacent frames A and C to
obtain an intermediate frame.

3.8. Pre Training

For most of the part, we just use simple simulated anneal-
ings on the dataset; And for some The main loss functions is
the SSIM values; For example, the loss function of motion-
detect part is the SSIM value between the mid-frame and the
front/back frame after removing the moving parts.

4. Experimental Results

R

figure 2: A inbetweening sample of hornet(from game HOL-
LOW KNIGHT)

When generating the sample, the action-detecting part treat
all the large contours to be moving. However, our current
matching method match the long contours and roughly drawn
their movements. However, the limitation of Bsplines and
cv2.findcontours affect the result significantly, which will be
discussed in the following section.

5. Discussions

Two limitations prevent our result from being better:

1) The method of finding contours. To divide the entire im-
age into contours is difficult, and thinning algorithm costs much
time, So we currently tried the cv2.findcontours(), leave the ex-
pecting to fill the colors by some later implementations after-
words. However, This results in the program’s robustness be
affected dramastically. A few pixels of noise may cause the
contour result of the builtin function to be much different and
later result in poor matching results; And during the moving
of the contours, the rough contours may intersect or separate,
which it’s really bad after coloring given that most of the lines
in the real cases are thin lines.

2) The B-splines. As the core part of our method, we’ve
encountered these issues relevant with B-splines:

a) Fitting problems. It’s obvious that B-splines can be self-
intersected for some control points, and sadly this may happen
during the fitting. To avoid this, we have to set epoch of fitting
to a relative low value. However, inaccurate splines may result
in intersections between 2 contours especially when they are
born from the same thin line before, so here comes the paradox.

b) Side-affects of aligning the contours. The advantage of
using the spline curve is that in addition to ensuring the integrity
of the contour line, it also unifies the vectorized length of the
curve for easy matching. However, it turns out that the contours
still varies: A few long contours requires hundreds of control
points to fit fairly, while most contours have length less then
100. Therefore, to simply let all the contours have the same
number of control points may not be a wise idea. Some effective
ways to get and match contours is required.



Acknowledgements

Thanks to Professor Gao’ang Wang and Senior Guan’hong
Wang for their guidance, resources and company for the pasting
year. The weekly seminars and meetings they held benefit a lot
to us, inspire us from multiple aspects.

References

(1]

[2]

[3]

[4]

[3]
(6]

(7]

[8]

[9]

(10]

(1]

[12]

[13]

(14]

LIUZ, YEHR A, TANG X, et al. Video frame synthesis using deep voxel
flow[C] // Proceedings of the IEEE international conference on computer
vision. 2017 : 4463 —4471.

LEE H, KIM T, CHUNG T-Y, et al. Adacof: Adaptive collaboration of
flows for video frame interpolation[C] // Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020: 5316—
5325.

JIANG H, SUN D, JAMPANI V, et al. Super slomo: High quality
estimation of multiple intermediate frames for video interpolation[C]
// Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018 : 9000 -9008.

BAO W, LAI W-S, MA C, et al. Depth-aware video frame interpola-
tion[C] // Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2019 : 3703 -3712.

CHEN W, FU Z, YANG D, et al. Single-image depth perception in the
wild[J]. Advances in neural information processing systems, 2016, 29.
NIKLAUS S, LIU F. Context-aware synthesis for video frame interpo-
lation[C] // Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018 : 1701 -1710.

SIYAO L, ZHAO S, YU W, et al. Deep animation video interpolation
in the wild[C] // Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2021 : 6587 —6595.

SHI Z, XU X, LIU X, et al. Video frame interpolation transformer[C]
// Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2022 : 17482 —17491.

BAO W, LAI W-S, ZHANG X, et al. Memc-net: Motion estimation and
motion compensation driven neural network for video interpolation and
enhancement[J]. IEEE transactions on pattern analysis and machine intel-
ligence, 2019, 43(3) : 933 -948.

SIMO-SERRA E, IIZUKA S, ISHIKAWA H. Mastering sketching: ad-
versarial augmentation for structured prediction[J]. ACM Transactions on
Graphics (TOG), 2018, 37(1): 1-13.

LI X, ZHANG B, LIAO J, et al. Deep sketch-guided cartoon video inbe-
tweening[J]. IEEE Transactions on Visualization and Computer Graphics,
2021, 28(8): 2938 —2952.

SIMO-SERRA E, IIZUKA S, SASAKI K, et al. Learning to simplify:
fully convolutional networks for rough sketch cleanup[J]. ACM Transac-
tions on Graphics (TOG), 2016, 35(4): 1-11.

WANG W, POTTMANN H, LIU Y. Fitting B-spline curves to point
clouds by curvature-based squared distance minimization[J]. ACM Trans-
actions on Graphics (ToG), 2006, 25(2): 214—238.

CELNIKER G, WELCH W. Linear constraints for deformable non-
uniform b-spline surfaces[C] // Proceedings of the 1992 Symposium on
Interactive 3D graphics. 1992: 165-170.



